Abstract
The emulsion polymerization process allows production of polymer particles with different structural morphologies. Films obtained after coalescence keep some memory of this morphology, but large modifications can occur during coalescence. In the present case, one of the polymers, polystyrene (PS), exhibits a glass temperature (Tg) much higher than the filmification temperature (close to room temperature), while the other one, poly(butyl acrylate) (PBA), has a much lowerTg. Furthermore, it is well known that dynamic mechanical measurements can be very helpful in providing information on the morphology of polymer materials, i.e., on geometrical and topological arrangement of homopolymer domains. At first, this method was used for comparison of two types of films: i) the first one obtained from structured-core (PS)-shell (PBA) particles, ii) the second one obtained from a blend of homopolymer particles (PS and PBA). It appears that the expected core-shell particles lost their geometric structure in the second film. Second, comparison of the predicted dynamic modulus and experimental data shows that i) strong interactions exist between PS nodules unless their coalescence has occured, leading to an abnormally high modulus at room temperature, ii) after achieving their coalescence, PS forms a more or less continuous phase. Both phenomena strongly depend on the particle size and their respective volume fractions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.