Abstract

Fe doped ZnO particles of flower-like shape, hexagonal prisms and hybrid structures flower-prisms have been synthesized by hydrothermal technique, and their luminescence and magnetic properties have been investigated as a function of the morphology changes due to iron dopant (0–0.03 at.% Fe3+). The X-ray diffractograms of Zn1-xFexO powders indicated a hexagonal wurtzite polycrystalline structure. SEM images reveal the change of Zn1-xFexO grains shape from flower-like to hexagonal prisms as the Fe concentration (x) increases from 0 to 3 at.% Fe. Undoped ZnO shown weak room temperatures ferromagnetism, with high coercivity (Hc = 107 Oe) and saturation magnetization Ms of 1.5·10−3 emu/g. ZnO doped with 1 and 3 at.% Fe presented a significant increase of the magnetization in comparison with the undoped ZnO. For ZnO doped with 3 at.% Fe, Ms = 32.5·10−3 emu/g and Mrem = 0.78·10−3 emu/g. Compared with other reports on magnetic properties of undoped and Fe doped ZnO, these results indicated higher coercivity and smaller magnetizations. The drop in the intensity of characteristic green-yellow photoluminescence band of ZnO at about 550–600 nm was attributed to the decrease of the number of oxygen vacancies and interstitial oxygen. By increasing the Fe concentration, the electron paramagnetic resonance (EPR) signal of undoped ZnO decreases due to the decrease of defects concentration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.