Abstract

In the present work, layered lithium rich Li(Li0.05Ni0.4Co0.3Mn0.25)O2 cathode materials were synthesized and its structural and electrical studies were analyzed. Layered Li(Li0.05Ni0.4Co0.3Mn0.25)O2 cathode material was prepared by sol-gel technique using citric acid as chelating agent. The prepared sample was characterized by X-ray diffraction, SEM-EDS studies. The crystallite size of the Li(Li0.05Ni0.4Co0.3Mn0.25)O2 cathode material was about 57 nm in which the diffusion path of lithium ion is effectively possible. The complexation behavior of prepared cathode material was analyzed by FT-IR spectroscopy. The electrical properties of the prepared Li(Li0.05Ni0.4Co0.3Mn0.25)O2 cathode material was studied by impedance and dielectric spectral analyzes. The maximum ionic conductivity of LiLi0.05Ni0.4Co0.3Mn0.25)O2 was found to be in the order of 10-3.4 S/cm. The dielectric analysis of cathode material confirms the non-Debye type behavior.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call