Abstract

This study focuses on a deposited ternary zirconium hafnium nitride (ZrHfN) thin film prepared using the reactive co-magnetron sputtering technique. The effect of the nitrogen (N2) flow rate on the films' structural, morphological, and chemical composition was investigated. The gracing-incidence X-ray diffraction (GIXRD) showed that all ZrHfN thin films exhibited a crystalline face-centered cubic structure with a strong (111) orientation. With increasing the N2 flow rate, the film's crystallography changed based on thermodynamic theory. The films demonstrated uniformity and homogeneity in their ternary nitride composition, as confirmed by transmission electron microscopy-energy dispersive X-ray spectroscopy (TEM-EDS) mapping and electron probe microanalyzer (EPMA). Chemical state analysis using X-ray photoelectron spectroscopy (XPS) indicated the presence of both nitride and oxynitride species in all samples. Notably, the atomic concentration of the main elements (Zr, Hf, and N) remained relatively stable over the controlled N2 flow rate range. However, the N2 flow rate played a crucial role in forming hafnium nitride and oxynitride chemical states, whereas it did not significantly influence the Zr phases, dominated by Zr oxides. Additionally, the hardness of the ternary ZrHfN thin films exhibited enhancement comparable to typical ternary nitrides.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.