Abstract

In this study, the influence of direct and indirect 99Tcm-labelling on the molecular structural integrity of monoclonal antibodies and other immunoglobulin preparations was investigated. Molecular composition of antibody preparations [two IgG monoclonal antibodies, one F(ab')2 fragment (all directly labelled), one indirectly labelled polyclonal human immunoglobulin preparation] and of serum samples after antibody injection were studied using polyacrylamide gel electrophoresis (PAGE; non-reducing and reducing conditions) and gel filtration chromatography. With PAGE, depending on the conditions used, a variety of lower molecular weight products could be detected. When analysing the same antibody preparations by gel filtration chromatography, all complete antibody preparations appeared as homogenous proteins of IgG molecular weight (150 kD). In F(ab')2 fragments, some further fragmentation to Fab' was noticed. Neither in vitro nor in vivo (serum) evidence of smaller fragments could be detected by gel filtration, despite their presence in PAGE. We therefore conclude that through the reductive step of direct 99Tcm-labelling, interchain disulphide linkages are broken but the polypeptide chains of complete IgG remain associated by non-covalent linkages, whereas (F(ab')2 is fragmented further to form essentially Fab'. The protein-denaturating conditions of PAGE (even if performed non-reducingly) seem to produce artifacts, not representing the real in vivo condition. PAGE results should therefore be interpreted only with great care.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.