Abstract

The effects of single femtosecond laser pulse irradiation (130 fs pulse duration, 800 nm center wavelength) on the structure of binary lithium silicate glasses of varying chemical compositions were investigated by micro-Raman spectroscopy. Permanent modifications were generated at the surface of the glass samples with varying laser fluences in the ablative regime and evaluated for changes in the corresponding Raman band positions and bandwidths. For increasing laser fluences, the position of certain Raman bands changed, indicating an increase in the mass density of the glass inside the irradiated area. Simultaneously, the widths of all investigated bands increased, indicating a higher degree of disorder in the glass structure with respect to bond-angle and bond-length variations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.