Abstract

Electron field emission (EFE) properties of nanocrystalline diamond (NCD) films synthesized by the bias-enhanced growth (beg) process under different bias voltages were investigated. The induction of the nanographitic phases is presumed to be the prime factor in enhancing the EFE properties of negative biased NCD films. Transmission electron microscopic investigations reveal that a negative bias voltage of −300 V increases the rate of growth for NCD films with the size of the grains changing from nano to ultranano size. This effect also is accompanied by the induction of nanographitic filaments in the grain boundaries of the films. The turn-on field (E0) for the EFE process then effectively gets reduced. The EFE process of the beg-NCD−300V films can be turned on at E0 = 3.86 V/μm, and the EFE current density achieved is 1.49 mA/cm2 at an applied field of 7.85 V/μm. On the other hand, though a positive-bias beg process (+200 V) results in the reduction of grain size, it does not induce sufficient nanographitic phases to lower the E0 value of the EFE process. Moreover, the optical emission spectroscopic investigation indicates that one of the primary causes that changes the granular structure of the NCD films is the increase in the proportion of C2 and CH species induced in the growing plasma. The polarity of the bias voltage is of less importance in the microstructural evolution of the films.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call