Abstract

The effects of temperature (≥25°C) on dough rheological properties and gluten functionality have been investigated for decades, but no study has addressed the effect of low temperature (<30°C) on gluten network attributes in flours with strong and weak dough characteristics. This study monitored changes in protein extractability in the presence and absence of reducing agents, the contents of readily accessible and SDS‐accessible thiols, and the secondary structural features of proteins in doughs from commercial hard wheat flour (HWF) and soft wheat flour (SWF) mixed at 4, 15, and 30°C. SWF mixed at 4 and 15°C showed similar mixing properties as HWF mixed at 30°C (which is the standard temperature). The effect of mixing temperature is different at the molecular level between the two flours studied. Protein features of HWF did not change as mixing temperature decreased, with the only exception being an increase in SDS‐accessible thiols. Decreasing mixing temperature for SWF caused an increase in SDS protein solubility and SDS‐accessible thiols as well as an increase in β‐turn structures at the expense of β‐sheet structures. Thus, noncovalent interactions appear to drive protein network at low temperatures (4 and 15°C), whereas covalent interactions dominate at standard mixing temperature (30°C) in doughs from both flours.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.