Abstract

The compounds reducing tumor cell viability and disrupting DNA topoisomerase reactions have been widely used in anticancer drug development. Ellipticine (5,11-dimethyl-6H-pyrido[4,3-b]carbazole) is a potent intercalating agent that interferes with nucleic acid processing through interaction with DNA topoisomerase II. Although ellipticine is a well-characterized compound, it is not a widely-accepted drug due to the adverse effects detected upon administration. We have previously reported two novel ellipticine derivatives, N-methyl-5-demethyl ellipticine (ET-1) and 2-methyl-N-methyl-5-demethyl ellipticinium iodide (ET-2) as potent compounds targeting DNA topoisomerase II. This study covers an extended synthesis, characterization, and activity data for five new salts of N-methyl 5-demetyl ellipticine (Z-1, Z-2, Z-4, Z-5 and Z-6) having several organic halides and their effects on human topoisomerase II enzymes. Moreover, combined in silico studies were conducted for better understanding of modes of action of studied molecules at the binding pocket of target. Our results showed that three of the derivatives (Z-1, Z-2, and Z-6) have considerable effect on the catalytic activity of human topoisomerase II implying the influence of alkyl groups added to the parental structure of ellipticine.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.