Abstract

The dynamic behavior of parachute systems is an extremely complex phenomenon characterized by nonlinear, time-dependent coupling between the parachute and surrounding airflow, large shape changes in the parachute, and three-dimensional unconstrained motion of the parachute through the fluid medium. Because of these complexities, the design of parachutes has traditionally been performed using a semi-empirical approach. This approach to design is time consuming and expensive. The ability to perform computer simulations of parachute dynamics would significantly improve the design process and ultimately reduce the cost of parachute system development. The finite element formulation for a structural model capable of simulating parachute dynamics is presented. Explicit expressions are given for structural mass and stiffness matrices and internal and external force vectors. Algorithms for solution of the nonlinear dynamic response are also given. The capabilities of the structural model are demonstrated by three example problems. In these examples, the effect of the surrounding airflow is approximated by prescribing the canopy pressure and by applying cable and payload drag forces on the structural model. The examples demonstrate the ability to simulate three-dimensional unconstrained dynamics beginning with an unstressed folded configuration corresponding to the parachute cut pattern. The examples include simulations of the inflation, terminal descent, and control phases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.