Abstract

A parametrically driven structural model based on Mindlin–Reissner plate theory is developed to capture the three-dimensional deflections of a compliance-based morphing trailing edge device with severe structural discontinuities. The model is used to study the Fish Bone Active Camber (FishBAC) device, which is represented as a discontinuous plate structure that captures the step changes in stiffness created by the concept’s geometrical configuration. Courant’s penalty method is implemented in the form of artificial penalty springs to account for stiffness discontinuities. A numerical validation is performed using finite element analysis, followed by experimental validation under actuation loads. This analytical model represents a robust, efficient, mesh-independent, and parameter-driven solution to modeling discontinuous plate structures. These traits make it useful for ongoing fluid–structure interaction analysis and optimization of the FishBAC concept and also for application to other complex composite structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.