Abstract

Array sensor failure poses a serious challenge to robust direction-of-arrival (DOA) estimation in complicated environments. Although existing matrix completion methods can successfully recover the damaged signals of an impaired sensor array, they cannot preserve the multi-way signal characteristics as the dimension of arrays expands. In this paper, we propose a structural-missing tensor completion algorithm for robust DOA estimation with uniform rectangular array (URA), which exhibits a high robustness to non-ideal sensor failure conditions. Specifically, the signals received at the impaired URA are represented as a three-dimensional incomplete tensor, which contains whole fibers or slices of missing elements. Due to this structural-missing pattern, the conventional low-rank tensor completion becomes ineffective. To resolve this issue, a spatio-temporal dimension augmentation method is developed to transform the structural-missing tensor signal into a six-dimensional Hankel tensor with dispersed missing elements. The augmented Hankel tensor can then be completed with a low-rank regularization by solving a Hankel tensor nuclear norm minimization problem. As such, the inverse Hankelization on the completed Hankel tensor recovers the tensor signal of an unimpaired URA. Accordingly, a completed covariance tensor can be derived and decomposed for robust DOA estimation. Simulation results verify the effectiveness of the proposed algorithm.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call