Abstract

Due to the increasing demand for energy, the development of new and good thermoelectric (TE) materials is very vital. In this study, with ab initio calculations, based on the density functional theory (DFT) using the self-consistent full potential linearized augmented plane wave (FPLAPW) method were performed to explore the structural, mechanical, electronic and thermoelectric properties of quaternary alloys CaKNaZ (Z = Si, Ge, Sn) with quaternary Heusler structure. optimization confirmed the most stable structure for CaKNaZ (Z = Si, Ge, Sn) compounds is Y1-type in the non-magnetic phase. All of the compounds have been shown to behave like semiconductors, with indirect band gaps of 0.82 and 0.69 for CaKNaSi, CaKNaSn respectively, and direct band gap of 0.46 for CaKNaGe. The theoretical study of thermoelectric properties for CaKNaZ (Z = Si, Ge, Sn) was carried out by Boltzmann theory as implemented in BoltzTraP code. we have obtained a high of figure of merit at moderate temperatures. This indicates that the studied alloys can be used in thermoelectric applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.