Abstract
The influence of milling time on the tribological behavior of a Co–Cr–Mo alloy designed for biomedical applications, synthesized via mechanical alloying is investigated. Elemental Co, Cr and Mo powders are milled using different milling times (2, 6, 12 and 18 h) in a high-energy ball mill. The resulting powders were subjected to cold uniaxial and hot isostatic pressing respectively, followed by sintering to obtain cylindrical samples, which were evaluated for their structural, mechanical and the wear behavior. Results showed that the grain and crystallite sizes of the powders decreased with increasing milling time, reaching low values of <10 μm and 32 μm respectively, at higher milling times. Furthermore, the wear rates and the coefficients of friction were lower, at higher milling times due to high densities (96%), and higher elasto-plastic resistance, as presented by the H/E and H3/E2 values of 0.026 and 0.0021 GPa, respectively. Increased milling time enables the refinement of grains and reduction in porosity in the Co–Cr–Mo alloy, which in turn increases the alloy's elasto-plastic resistance and enhances its wear resistance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.