Abstract

The development of new encapsulating coatings for flexible solar cells (SCs) can help address the complex problem of the short lifespan of these devices, as well as optimize the technological process of their production. In this study, new laminate-type protective composite coatings were prepared using a silicon oxynitride thin-film matrix obtained by curing the pre-ceramic polymer perhydropolysilazane (PHPS) through two low-temperature methods: (i) thermal annealing at 180 °C and (ii) exposure to UV radiation at wavelengths of 185 and 254 nm. Single-walled carbon nanotubes (SWCNTs) were used as fillers via dry transfer, facilitating their horizontal orientation within the matrix. The optical, adhesive, and structural properties of the matrix films and SiOxNy/SWCNT composite coatings, along with their long-term stability, were studied using Fourier transform infrared spectroscopy (FTIR), UV-Vis spectroscopy, HR-SEM, spectral ellipsometry, and a progressive-load scratch test. In this work, the optical constants of PHPS-derived films were systematically studied for the first time. An antireflection effect was observed in the composites revealing their two-component nature associated with (i) the refractive index of the SiOxNy matrix film and (ii) the embedding of a SWCNT filler into the SiOxNy matrix. The curing method of PHPS was shown to significantly affect the resulting properties of the films. In addition to being used as protective multifunctional coatings for SCs, both SiOxNy/SWCNT composites and SiOxNy matrix films also function as broadband optical antireflective coatings. Furthermore, due to the very low friction coefficients observed in the mechanical tests, they show potential as scratch resistant coatings for mechanical applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.