Abstract
abstractWe studied the elemental analysis, structural morphology, mechanical, and electrical properties of carbon nanoparticles synthesized from diesel. The spherical carbon particle size in the range of about 10 to 80 nm in diameter was observed in scanning electron microscope (SEM) studies that were identified by Atomic force microscopy (AFM) study as an aggregation of carbon particles of average size 2.5 nm. The surface rms of carbon nanoparticle thin film (CNTF) was measured directly by AFM and found 0.22 nm. The Derjaguin–Muller–Toporov (DMT) elastic modulus of carbon nanoparticles (CNPs) was measured by PeakForce QNM mode of AFM. The minimum and maximum elastic modulus was measured of 0.40 GPa and 43.89 GPa, respectively. The resistivity, conductivity, magneto resistance, mobility, and average Hall co-efficient were measured by “Ecopia Hall-effect measurement system” by four-point Van der Pauw approach at ambient condition. We demonstrated I–V characteristic at the Indium/CNTF thin film interface, which is accompanied by rectifying behavior.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.