Abstract

Human working memory capacity develops during childhood and is a strong predictor of future academic performance, in particular, achievements in mathematics and reading. Predicting working memory development is important for the early identification of children at risk for poor cognitive and academic development. Here we show that structural and functional magnetic resonance imaging data explain variance in children's working memory capacity 2 years later, which was unique variance in addition to that predicted using cognitive tests. While current working memory capacity correlated with frontoparietal cortical activity, the future capacity could be inferred from structure and activity in basal ganglia and thalamus. This gives a novel insight into the neural mechanisms of childhood development and supports the idea that neuroimaging can have a unique role in predicting children's cognitive development.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call