Abstract
Phosphatidylethanolamine (PtdEtn) is one of the most abundant phospholipids in many animal cell types. The Drosophila easily shocked (eas(2)) mutant, used as an epilepsy model, is null for the PtdEtn biosynthetic enzyme, ethanolamine kinase. This mutant displays bang sensitive paralysis, and was previously shown to have decreased levels of PtdEtn. We have developed a highly selective and sensitive measurement strategy using ion mobility-mass spectrometry for the relative quantitation of intact phospholipid species directly from isolated brain tissue of eas mutants. Over 1200 distinct lipid signals are observed and within this population 38, including PtdEtn, phosphatidylinositol (PtdIns) and phosphatidylcholine (PtdCho) species are identified to have changed significantly (p < 0.03) between mutant and control tissue. This method has revealed for the first time the structural complexity and biosynthetic interconnectedness of specific PtdEtn and PtdIns lipid species within tissue, and provides great molecular detail compared to traditionally used detection techniques.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.