Abstract

Human interleukin-24 (IL-24) is unique among the IL-10 superfamily as there is considerable evidence that it possesses multiple anti-cancer properties, including direct tumor cell cytotoxicity, helper T cell (TH1) immune stimulation, and anti-angiogenic activities. The primary sequence of human IL-24 differs from homologous cytokines, because it possesses three consensus N-linked glycosylation sites and the potential for a single disulfide bond. To address the significance of these modifications in human IL-24, we analyzed the relationship between post-translational modifications and the cytokine activity of the human IL-24 protein. In contrast to related interleukins, we identified a relationship between net glycosylation, protein solubility, and cytokine activity. In addition, abrogation of the two cysteine residues by mutagenesis dramatically altered the ability of IL-24 to secrete from host cells and resulted in the concomitant loss of IL-24 activity. We conclude that, unlike other IL-10 family members, human IL-24 must be glycosylated to maintain solubility and bioavailability. Further, a single, unique disulfide bond is required for secretion and activity. These structure-function relationships show that, although IL-24 is a member of the IL-19 subfamily of IL-10-like cytokines by sequence similarity, its surface properties and its distinctive disulfide arrangement make it unique. These observations could explain the novel biological activities measured of this cytokine. Understanding the structural basis of IL-24 activity will be important in the interpretation of the function of this cytokine and in the development of scale-up strategies for biophysical and clinical applications.

Highlights

  • Human interleukin-24 (IL-24) is unique among the IL-10 superfamily as there is considerable evidence that it possesses multiple anti-cancer properties, including direct tumor cell cytotoxicity, helper T cell (TH1) immune stimulation, and anti-angiogenic activities

  • Receptor-mediated Killing and Receptor Activation Are Disulfide- and Glycosylation-dependent—We have previously shown that IL-24 protein can kill melanoma and breast tumor cells in a paracrine manner via engagement of the IL-22/IL-20 receptors [24, 32]

  • IL-24 possesses a unique disulfide bridge that is not found in other related cytokines

Read more

Summary

Introduction

Human interleukin-24 (IL-24) is unique among the IL-10 superfamily as there is considerable evidence that it possesses multiple anti-cancer properties, including direct tumor cell cytotoxicity, helper T cell (TH1) immune stimulation, and anti-angiogenic activities. The primary sequence of human IL-24 differs from homologous cytokines, because it possesses three consensus N-linked glycosylation sites and the potential for a single disulfide bond. In the case of recombinant human IL-10, reduction of the two disulfide bridges by the addition of 1 mM dithiothreitol resulted in a loss of biological activity, but had only a relatively minor effect on the overall secondary structure of the protein [29].

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call