Abstract

We report the electrochemically driven phase transformation of amide-containing alkanethiol, 3-mercapto-N-nonylpropionamide (1ATC9) self-assembled monolayers (SAMs) into a linear nanostructure. Hydrogen-bonding interactions between buried amide groups cause multistep electrochemical desorption and enable an unusual phase change, affording a less dense, textured structure. Single-component 1ATC9 SAMs prepared in solution at room temperature for 24 h consist of two phases with different apparent heights in scanning tunneling microscope images; these phases are readily manipulated by controlling solution temperature and deposition time. Intermolecular hydrogen-bonding interactions give high thermal stability to the films. The presence of two independent cathodic peaks in 1ATC9 monolayer voltammograms indicates two-step reductive desorption. A monolayer phase transition occurs after the first cathodic peak, transforming a close-packed monolayer into a striped phase that is energetically favored at low surface...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.