Abstract

A new mechanism of the dipole-induced dipole polarizability effect by the example of Open image in new window 1-halogensilatranes is proposed. The mechanism involves a through-space interaction between the dipole moment μ of the core and the dipole Δμ which is induced on the halogen and, in turn, induces an extra dipole ΔΔμ on the transannular bond Si ← N to make it stronger. This effect explains for the first time the previously discovered contradiction for 1-halogensilatranes where an inverse dependence in the linear correlations between the Si ← N bond length, δ15N, δ1H(CH2N) chemical shifts, and the inductive constant σ are observed. For example, the length of the Si ← N coordination bond is shorter in 1-chlorosilatranе than in 1-fluorosilatrane due to the fact that the polarizability effect is stronger than the inductive effect in the case of the Cl atom.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.