Abstract

The structural, electronic, and magnetic properties for nondefective and defective structures and the diffusion of both cations and anions in chromium oxide (α-Cr2O3) are investigated theoretically with the periodic quantum-chemical method. Three different point defects are studied, namely, Cr vacancy, Cr Frenkel defect (composed of an interstitial Cr atom and a Cr vacancy), and O vacancy. All these defects affect the electronic properties of Cr2O3 drastically and are involved in diffusion processes in passive film growth. The calculated defect formation energy shows that the stability of defects falls in the following order: Cr Frenkel defect (EFr(Cr) = 2.36 eV) > Cr vacancy (EV(Cr) = 4.84 eV) > O vacancy (EV(O) = 5.12 eV). Relaxation occurs only on the first and the second nearest neighbors in each case. Each defect adds an extra localized level inside the band gap. Cr Frenkel defects add donor levels composed of O states; Cr vacancy defects add acceptor levels composed of states from both Cr and O atoms; and O vacancies do not give any level in the gap. Defects influence the magnetic moments on surrounding atoms, especially on the first nearest neighbors. Various diffusion processes of both cations and anions are investigated by calculating the Cr3+ and O2– diffusion among various sites using the climbing-image nudged-elastic-band (cNEB) approach. The activation energy ED (2.57–3.21 eV) obtained for the diffusion of Cr3+ is in good agreement with the experimental ED (2.46 eV). The calculated ED for O2– ranges from 2.21 to 3.65 eV, which is in agreement with experimental data. For each investigated diffusion pathway, frequencies calculated by finite difference methods are used to obtain jump frequencies using transition state theory (TST). Combining the pre-exponential factors with activation energies, the diffusion coefficients are calculated which are compared with experimental values.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.