Abstract

Ni-doped TiO2 films were deposited on Si(100) substrates by sol–gel technique. X-ray photoelectron spectroscopy analysis suggests that the valence of Ni ion is in +2 and oxygen vacancies increase with increasing Ni content. X-ray diffraction measurements indicate that Ni doping catalyzes the anatase-to-rutile transformation (ART) of TiO2 films, which is due to the decrease of the ART activation energy. The reversible ferromagnetism of the samples with Ni fraction is found, which is due to an anatase-to-rutile junction destroying an F-center bound magnetic polaron. Optical properties of Ni-doped TiO2 films were studied by the ellipsometric spectra. With increasing Ni content, the optical band gap of TiO2 films is decreased from 3.56 to 3.34eV, which may be related to phase composition and impurity band.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.