Abstract

We report the structural, magnetic, and magnetocaloric characterization of glass-coated Ni42.9Mn37.1Sn20.0 microwires produced by the Taylor-Ulitovsky method. Microwire samples crystallized into a single-phase austenite with the L21-type crystal structure (space group Fm3̄m, lattice parameter a ≈ 6.02 Å) and a Curie temperature of 349 K. A distinctive feature of the produced microwires is that saturation magnetization is reached at a very low magnetic field (∼0.15 T). For a magnetic field change of 3 T, the produced microwires showed a reversible maximum magnetic entropy change |ΔSM|max of 2.3 J kg−1 K−1 and a refrigerant capacity of 197 J kg−1, which are similar to the values reported by other austenitic NiMnSn alloys produced by rapid quenching techniques.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call