Abstract
Lightweight flexible aircraft suffers from unwanted oscillatory vibrations during aircraft manoeuvres. A recently developed distributed-delay signal (DZV) shaper is therefore proposed to be applied as a feedforward controller to alleviate the manoeuvre loads, as an alternative to traditional structural filters used routinely in this context. Structural filters are essentially linear low-pass filters with bandwidth below the significant flexible modes, applied to control signals generated either by the pilot’s direct input or by the flight control system. It has been showed that if instead a properly tuned signal shaper is used, better performance can be achieved: first, the target modes are significantly attenuated while the responsiveness of the aircraft is less compromised and secondly, the oscillatory nature of the vibrations are reduced. The high fidelity simulation results on a full scaled dynamic model of a highly flexible blended wing–body (BWB) aircraft show that in comparison to traditional structural filters, signal shapers significantly reduce the wing root loading (forces and moments) which provides potential structural benefits.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.