Abstract
Pure and Ag doped CdS nanocrystalline films with different Ag doping concentrations were successfully grown on glass substrates by a sol-gel spin coating method. Ag doping was performed using silver acetate aqueous solution with 0.01, 0.02 and 0.03 M concentrations via ion exchange. The influences of Ag doping on structural, vibrational, morphological, linear and third order nonlinear optical properties of CdS nanocrystalline films were studied. The x-ray diffraction patterns of the films exhibited a broad peak centered at an angle 2θ = 26.5° along the (111) plane, which confirms the cubic structure and formation of nanocrystalline films. Raman spectra of films demonstrate a shift in longitudinal optical phonon vibrations as compared to the bulk counterpart. Pure CdS film shows high transmittance (83%) in the visible and near infrared (NIR) regions. With Ag doping, a significant red shift in the band edge and reduction in the transmittance of the films in visible and NIR regions were observed. However, the films doped with Ag showed appreciable transmittance in visible region for window layer applications. A significant effect on optical parameters such as absorption index, refractive index, and optical dielectric constant was observed after Ag doping. The nonlinear optical properties of films were enhanced with incorporation of Ag atoms into the CdS binary system. The values of nonlinear optical susceptibility χ(3) and refractive index n2 were found to increase with increasing Ag concentration and were estimated to be in the range of 2.92 × 10−10 − 1×10−7esu and 1.00 × 10−9 − 2.00 × 10−7esu, respectively. These values suggest that these films can be potential candidates for nonlinear optical device applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.