Abstract

Glasses were prepared in the pseudo-binary system (1 − x)AgPO 3–xWO 3 (0≤ × ≤ 0.6 mol%). The structural evolution of the vitreous network was studied as a function of composition by thermal analysis, Fourier Transform Infrared spectroscopy (FTIR), Raman scattering, high resolution 31P solid state NMR and XANES at the W-L 1 absorption edge. For compositions with x ranging from 0 to 0.5 a pronounced increase in the glass transition temperature is observed, suggesting a significant increase in the glass network connectivity. At the same time Raman spectra indicate that tungsten atoms are linked to non-bridging oxygen atoms (W–O- or W=O bonded species) whereas the 31P MAS-NMR spectra indicate the successive formation of new P–O–W linkages. The formation of some anionic tungsten sites (if these are revealed by the presence of W–O terminal bonds) implies an increase in the average degree of polymerization of the phosphate network, which is consistent with the compositional evolution of the 31P MAS-NMR spectra at low x values. For higher x-values, the Raman spectra indicate the presence of W–O–W linkages. W-L 1 XANES data indicate that at least 90% of tungsten atoms are octahedrally coordinated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.