Abstract

Pneumolysin, a virulence factor from the human pathogen Streptococcus pneumoniae, is a water-soluble protein which forms ring-shaped oligomeric structures upon binding to cholesterol-containing lipid membranes. It induces vesicle aggregation, membrane pore formation and withdrawal of lipid material into non-bilayer proteolipid complexes. Solid-state magic angle spinning and wideline static NMR, together with freeze-fracture electron microscopy, are used to characterize the phase changes in fully hydrated cholesterol-containing lipid membranes induced by the addition of pneumolysin. A structural model for the proteolipid complexes is proposed where a 30-50-meric pneumolysin ring lines the inside of a lipid torus. Cholesterol is found to be essential to the fusogenic action of pneumolysin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call