Abstract

Docking domains (DDs) located at the C- and N-termini of polypeptides play a crucial role in directing the assembly of polyketide synthases (PKSs), which are multienzyme complexes. Here, we determined the crystal structure of a complex comprising the C-terminal DD (CDDMlnB) and N-terminal DD (NDDMlnC) of macrolactin trans-acyltransferase (AT) PKS that were fused to a functional enzyme, AmpC EC2 β-lactamase. Interface analyses of the CDDMlnB/NDDMlnC complex revealed the molecular intricacies in the core section underpinning the precise DD assembly. Additionally, circular dichroism and steady-state kinetics demonstrated that the formation of the CDDMlnB/NDDMlnC complex had no influence on the structural and functional fidelity of the fusion partner, AmpC EC2. This inspired us to apply the CDDMlnB/NDDMlnC assembly to metabolon engineering. Indeed, DD assembly induced the formation of a complex between 4-coumarate-CoA ligase and chalcone synthase both involved in flavonoid biosynthesis, leading to a remarkable increase in naringenin production invitro.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.