Abstract

Interest in atomic scale structures of individual specimens has invigorated developments of high-resolution probes, which include single-particle imaging using x-ray free-electron lasers (XFELs). The demonstrated spatial resolution, however, remains at tens of nanometers with difficulty in collecting diffraction signals at high frequency distinguished from noises. As such, various resolution-enhancement methods have been introduced, but few experimental verifications are available. Here, by carrying out XFEL single-pulse diffraction experiments, we explicitly unveil the dependence of SNRs on incident x-ray flux, data averaging, or multiparticle interference. We further propose a data-accumulation method of resolution-shell averaging as a robust scheme to improve the SNR. This study establishes a roadmap with which high-resolution XFEL single-pulse experiments can be contrived.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call