Abstract

Anti-CRISPR (Acr) proteins are phage-borne inhibitors of the CRISPR-Cas immune system in archaea and bacteria. AcrIIC2 from prophages of Neisseria meningitidis disables the nuclease activity of type II-C Cas9, such that dimeric AcrIIC2 associates with the bridge helix (BH) region of Cas9 to compete with guide RNA loading. AcrIIC2 in solution readily assembles into oligomers of variable lengths, but the oligomeric states are not clearly understood. In this study, we investigated the dynamic assembly of AcrIIC2 oligomers, and identified key interactions underlying the self-association. We report that AcrIIC2 dimers associate into heterogeneous high-order oligomers with the equilibrium dissociation constant K D ∼8 μM. Oligomerization is driven by electrostatic interactions between charged residues, and rational mutagenesis produces a stable AcrIIC2 dimer with intact Cas9 binding. Remarkably, the BH peptide of Cas9 is unstructured in solution, and undergoes a coil-to-helix transition upon AcrIIC2 binding, revealing a unique folding-upon-binding mechanism for Acr recognition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.