Abstract

Chemical oxidation of the chlorosomes from Chloroflexus aurantiacus and Chlorobium tepidum green bacteria produces bacteriochlorophyll radicals, which are characterized by an anomalously narrow EPR signal compared to in vitro monomeric BChl c (.+) [Van Noort PI, Zhu Y, LoBrutto R and Blankenship RE (1997) Biophys J 72: 316-325]. We have performed oxidant concentration and temperature-dependent X-band EPR measurements in order to elucidate the line narrowing mechanism. The linewidth decreases as the oxidant concentration is increased only for Chloroflexus indicating that for this system Heisenberg spin exchange is at least partially responsible for the EPR spectra narrowing. For both species the linewidth is decreasing on increasing the temperature. This indicates that temperature-activated electron transfer is the main narrowing mechanism for BChl radicals in chlorosomes. The extent of the electron transfer process among different BChl molecules has been evaluated and a comparison between the two species representative of the two green bacteria families has been made. In parallel, high frequency EPR experiments have been performed on the oxidized chlorosomes of Chloroflexus and Chlorobium at 110 and 330 GHz in the full temperature range investigated at X-band. The g-tensor components obtained from the simulation of the 330 GHz EPR spectrum from Chlorobium show the same anisotropy as those of monomeric Chl a (.+) [Bratt PJ, Poluektov OG, Thurnauer MC, Krzystek J, Brunel LC, Schrier J, Hsiao YW, Zerner M and Angerhofer A (2000) J Phys Chem B 104: 6973-6977]. The spectrum of Chloroflexus has a nearly axial g-tensor with reduced anisotropy compared to Chlorobium and monomeric Chl a in vitro. g-tensor values and temperature dependence of the linewidth have been discussed in terms of the differences in the local structure of the chlorosomes of the two families.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.