Abstract

This study investigates the behaviour of As₂₀Se₈₀ and Ge₂₅Se₇₅ chalcogenide glasses near the glass transition temperature using differential scanning calorimetry (DSC) and thermomechanical analysis (TMA), addressing a gap in the literature for these compositions. Precise TMA measurements of viscosity in the range of 10⁶ – 10¹³ Pa·s clarified existing data and improved the quality of fits describing the temperature-dependent viscosity for both compositions. The DSC method enabled a comprehensive analysis of structural relaxation behaviours, which were described using the Tool-Narayanaswamy-Moynihan (TNM) model with the determination of its four parameters. The study discusses the viscosity and structural relaxation behaviours of both glass-formers in relation to their structure, referencing previous results for other binary chalcogenide glasses in the As-Se and Ge-Se systems. The findings indicate significant changes in viscosity and activation energy of structural relaxation with the addition of As or Ge, while the non-linearity and non-exponentiality parameters remain largely unaffected.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.