Abstract

AbstractThe paper deals with the study of structural response of partially cracked nuclear containment model structure in over pressurized condition with the simulated experiments conducted under severe accidents analysis program for Indian nuclear containment structures. In this research, the fracture characterization of concrete containment structure is also investigated through the over pressure experiments on the BARC Containment (BARCOM) test model structure, which represents 1:4 scale of the prototype 540 MWe Tarapur pre‐stressed nuclear containment structure. In addition to the surface‐type electrical resistance, strain gauges conventionally and commonly deployed for containment proof‐test and ultimate load capacity evaluation of containment models, embedded vibratory wire strain gauges (VWSGs), the digital image correlation (DIC) technique, and soap bubble tests are employed in this study. For fracture characterization, an optical crack profile (OCP) technique is developed through DIC full‐field experiment conducted at the identified critical locations with conventional strain gauges to evaluate the fracture energy and the characteristics of the fracture process zone of concrete containment model structure subjected to the over‐pressure condition for its performance assessment in the case of the beyond design basis accidents. The combination of conventional sensors and full‐field DIC deployed for the first time on the largest scale containment model along with the associated analysis is shown to be effective in fracture characterization and improved structural integrity assessment of the containment model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call