Abstract
Comprehensive inelastic neutron-scattering measurements were performed to study the soft optical phonons in La2-xSrxCuO4 at x=0.10, 0.12 and 0.18. We found at x=0.18 that the softening of Z-point phonon, suggesting incipient structural transition from the low-temperature orthorhombic (LTO) to low-temperature tetragonal (LTT) phase, breaks at Tc, which is consistent with the previous report by Lee et al. for the optimally doped x=0.15 sample. As for x=0.10 and 0.12, on the other hand, the softening continues even below Tc. It is thus clarified that the breaking of soft phonon is characteristic of La2-xSrxCuO4 in the optimally and overdoped regions. In the course of studying the soft phonons, we discovered that a central peak remains above the LTO to high-temperature tetragonal (HTT) phase transition at Ts1 and splits into incommensurate components along the (1 1 0)HTT direction at higher temperatures. This is a common feature for both x=0.12 and 0.18 and their temperature dependences of the splitting 2d can be scaled by using a renormalized temperature T/Ts1. In the high temperature limit, d saturates around d ~ 0.12 r.l.u., which value is close to the splitting of incommensurate magnetic signals. This implies that the incipient lattice modulation starts appearing at very high temperature. Details of this modulation and its relations with other properties are, however, not yet clarified.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Journal of the Physical Society of Japan
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.