Abstract

The MLL/KMT2 family enzymes are frequently mutated in human cancers and congenital diseases. They deposit the majority of histone 3 lysine 4 (H3K4) mono-, di-, or tri-methylation in mammals and are tightly associated with gene activation. Structural and biochemical studies in recent years provide in-depth understanding of how the MLL1 and homologous yeast SET1 complexes interact with the nucleosome core particle (NCP) and how their activities for H3K4 methylation are regulated by the conserved core components. Here, we will discuss the recent single molecule cryo-EM studies on the MLL1 and ySET1 complexes bound on the NCP. These studies highlight the dynamic regulation of the MLL/SET1 family lysine methyltransferases with unique features as compared with other histone lysine methyltransferases. These studies provide insights for loci-specific regulation of H3K4 methylation states in cells. The mechanistic studies on the MLL1 complex have already led to the development of the MLL1 inhibitors that show efficacy in acute leukemia and metastatic breast cancers. Future studies on the MLL/SET1 family enzymes will continue to bring to light potential therapeutic opportunities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.