Abstract

Nitrile hydratase (NHase), an excellent bio-catalyst for the synthesis of amide compounds, was composed of two heterologous subunits. A thermoalkaliphilic NHase NHCTA1 (Tm = 71.3°C) obtained by in silico screening in our study exhibited high flexibility of α-subunit but excellent thermostability, as opposed to previous examples. To gain a deeper structural insight into the thermostability of NHCTA1, comparative molecular dynamics simulation of NHCTA1 and reported NHases was carried out. By comparison, we speculated that β-subunit played a key role in adjusting the flexibility of α-subunit and the different conformations of linker in "α5-helix-coil ring" supersecondary structure of β-subunit can affect the interaction between β-subunit and α-subunit. Mutant NHCTA1-α6 C with a random coil linker and mutant NHCTA1-αβγ with a truncated linker were therefore constructed to understand the impact on NHCTA1 thermostability by varying the supersecondary structure. The varied thermostability of NHCTA1-α6 C and NHCTA1-αβγ (Tmα6C = 74.4°C, Tmαβγ = 65.6°C) verified that the flexibility of α-subunit adjusted by β-subunit was relevant to the stability of NHCTA1. This study gained an insight into the NNHCTA1 thermostability by virtual dynamics comparison and experimental studies without crystallization, and this approach could be applied to other industrial-important enzymes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.