Abstract

The histone deacetylase (HDAC) enzyme from Plasmodium falciparum has been identified as a novel target for the development of antimalarial therapy. A ligand-refined homology model of PfHDAC-1 was generated from the crystal structures of human HDAC8 and HDLP using a restraint guided optimization procedure involving the OPLS/GBSA potential setup. The model was extensively validated using protein structure checking tools. A predictive docking study was carried out using a set of known human HDAC inhibitors, which were shown to have in vitro antimalarial activity against the chloroquine sensitive D6 and resistant W2 strains of P. falciparum. Pose validation and score-based active/inactive separation studies provided independent validation of the geometric accuracy and the predictive ability of the generated model. Comparative analysis was carried out with the human HDACs to identify differences in the binding site topology and interacting residues, which might be utilized to develop selective PfHDAC-1 inhibitors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.