Abstract

The removal of carbon dioxide from the waste streams of industrial processes is a major challenge for creation of a sustainable circular economy. This makes the synthesis of formate from CO2 by NAD+ dependent formate dehydrogenases (FDHs) an attractive process for this purpose. The efficiency of this reaction is however low and to achieve a viable industrial process an optimised engineered enzyme needs to be developed.In order to understand the detailed enzymatic mechanism of catalysis structures of different cofactor and substrate complexes of the FDH from the thermophilic filamentous fungus, Chaetomium thermophilum have been determined to 1.2–1.3 Å resolution. The substrate formate is shown to be held by four hydrogen bonds in the FDH catalytic site within the ternary complex with substrate and NAD+and a secondary formate binding site is observed in crystals soaked with substrate. Water molecules are excluded from the FDH catalytic site when the substrate is bound. The angle between the plane of the NAD+ cofactor pyridine ring and the plane of the formate molecule is around 27°. Additionally, structures of a FDH mutant enzyme, N120C, in complex with the reduced form of the cofactor have also been determined both in the presence and absence of formate bound at the secondary site. These structures provide further understanding of the catalytic mechanism of this fungal enzyme.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.