Abstract

p21-activated kinases (PAKs) play an important role in diverse cellular processes. Full activation of PAKs requires autophosphorylation of a critical threonine/serine located in the activation loop of the kinase domain. Here we report crystal structures of the phosphorylated and unphosphorylated PAK1 kinase domain. The phosphorylated PAK1 kinase domain has a conformation typical of all active protein kinases. Interestingly, the structure of the unphosphorylated PAK1 kinase domain reveals an unusual dimeric arrangement expected in an authentic enzyme-substrate complex, in which the activation loop of the putative "substrate" is projected into the active site of the "enzyme." The enzyme is bound to AMP-PNP and has an active conformation, whereas the substrate is empty and adopts an inactive conformation. Thus, the structure of the asymmetric homodimer mimics a trans-autophosphorylation complex, and suggests that unphosphorylated PAK1 could dynamically adopt both the active and inactive conformations in solution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call