Abstract

Activation of human blood coagulation factor XI zymogen to factor XIa plays a significant role in the upstream coagulation pathway, in which factor XIa activates factor IX zymogen. The mechanistic details of the proteolytic activation of factor XI by the activating enzyme thrombin are not well-understood at atomic level. In this study, we employed a combination of molecular docking and microsecond time-scale molecular dynamics simulations to identify the key regions of interaction between fXI and thrombin. The activating complex between the substrate and enzyme was modeled to represent the initial acylation step of the serine-protease hydrolysis mechanism. The proposed solution structural complex, fIX:fIIa, obtained from 3 microseconds of MD refinement, suggests that the activation of factor XI is mediated by thrombin's anion binding exosite-II interactions with A3 and A4 domains. We predict that the two positively charged arginine residues (Arg409 and Arg413) in the exosite-2 region, the β- and γ-insertion loops of thrombin play an important structural role in the initial activating complex between fXI and thrombin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.