Abstract

Two novel coordination polymers, [Bi2(2,3pydc)2(2,3pydcH)2(H2O)]n (1) and {(Et3NH)2[Bi(2,3pydc)(2,3pydcH)Cl2]}n (2) were prepared using as a prolinker pyridine-2,3-dicarboxylic acid (2,3pydcH2). The obtained complexes were fully characterized by elemental analysis, TG/DTG, FT-IR, solid-state photoluminescence, DFT calculations and single-crystal X-ray diffraction. The obtained complexes crystallized in the triclinic P-1 space group (1) and comprise dimeric units with two crystallographically different Bi(III) centers (polyhedra: distorted pentagonal bipyramid and bicapped trigonal prism) and monoclinic P21/c space group (2) with a distorted monocapped pentagonal bipyramid of Bi(III) center. The various coordination modes of bridging carboxylate ligands are responsible for the formation of 1D chains with 4,5C10 (1) and 2C1 (2) topology. The photoluminescence quantum yield for polymer 2 is 8.36%, which makes it a good candidate for more specific studies towards Bi-based fluorescent materials. Moreover, it was detected that polymer 1 is more than twice as active against H. pylori as polymer 2. It can be concluded that there is an existing relationship between the structure and the antibacterial activity because the presence of chloride and triethylammonium ions in the structure of complex 2 reduces the antibacterial activity.

Highlights

  • Contemporary coordination chemistry establishes a scientific basis for obtaining compounds used as sources for synthesizing functional materials for technology [1,2,3,4,5,6,7] and for medicine or pharmacy [8,9]

  • When selecting a central ion, we focused on the multiple applications of Bi(III) compounds as, for example, photoluminescent materials [15,16,17], catalysts [18], medical drugs for gastrointestinal disorders caused by Helicobacter pylori or anticancer agents [19,20,21,22]

  • The SC-XRD studies revealed that the coordination polymer [Bi2(2,3pydc)2(2,3pydcH)2(H2O)]n T(1h) ecrSyCst-aXllRizDedsitnudthieestrricelvineiaclespdatcheagtrtohuepcPo-o1.rdThineaatsioymn mpoeltyrimc uenri[tBcio2n(2ta,3inpeydddci)m2(e2r,i3cpuynditcsHof)2t(wHo2O)]n (1) crcyrsytsatlallilzoegdraipnhitchaellytricdliisntiincgsupiashcaebglerouBpi(IPII)-1.ceTnhteeras.syTmhemreetrwiceruenittwcoonataniinonesd doifmpeyrriciduinnei-t2s,3o-f two crystadlilcoagrbraopxyhliiccalalcyiddifsotirngeaucihshBaiblceenBtie(IrI,I)ocneentdeerpsr.oTtohnearteedwe(r2e,3tpwydoca)naionndsoonfepymroidnion-de-e2p,r3o-dtoincaatrebdoxylic acid (f2o,3rpyedaccHh).BAi dcdeintitoenra, lloy,ntehedreepwraostoonnaetwedate(r2,m3polyedcucl)e aconodrdoinnaetedmtoontoh-edBeip1rcoetnotnear t(eFdigu(2re,31pay).dcH)

Read more

Summary

Introduction

Contemporary coordination chemistry establishes a scientific basis for obtaining compounds used as sources for synthesizing functional materials for technology [1,2,3,4,5,6,7] and for medicine or pharmacy [8,9]. It is a great challenge to obtain proper functional materials because the properties of coordination compounds depend on the type of both metal ions and connecting ligands. Our interest in this field concerns the chemistry of lead(II) [10,11,12,13,14] and bismuth(III) coordination polymers with heteroaromatic carboxylate ligands. The varied coordination structures of bismuth(III) complexes are affected by the kind of donating ligand and the different coordination modes This is especially important in the synthesis of functional coordination polymers (CPs), where ligands play an additional role as organic linkers. DuriDnugrtinhge tchoeucrosuerosef othf itshisstustduyd,yw, wee(i()i)ssyynntthheesizzeeddaannddfufulllylyphpyhsyicsoichoecmheicmalilcyaclhlyarcahctaerraizcetderized two ntwovoenlobvieslmbuistmhu(ItIhI()IIcIo) ocrodoirndaintaiotinonppoolylymmeerrss wwiitthh ppyyrriiddininee-2-,23,-3d-idcaicrbaorbxyolxicylaiccidac(i2d,3p(2y,d3cpHy2d) caHs a2) as a prolinpkroelrin; k(ieir);p(iri)epserensteendtetdhethme moloelceuculalarrssttrruuccttuurreeaannddtotpooploogloygoyf [oBfi2[(B2,i32p(2y,d3cp)2y(2d,c3)p2y(d2,c3Hp)y2(dHc2HO))]2n((H1)2O)]n (c1lo) saencpadconronod{nvt(a{Eit(cdaEttec3st3tNNasinnHHinte))h22xt[e[hpBBelicai(r(2ncy2,ra3s,y3ttpiaspoyltndyascdltf)rocs(u2)trc(r,3t2utuhp,c3reytepduslyco;rHdne(isec)v;CH)p(lic)2av]Cai}r)rnlr2(cai2]eac})dtr;nir(viio(iie2tiu)yd)t;c; oo(D(invuiFif)tT)irsDcmt(oudFendeTdfinieas(rddnimtdyetehnvfdesuisinalutuycnamtldifiouzinnveneadicssltcuthtiehaoenlenciionzearetlyepdt)rrhmotcehpaooleelcreruiyctnilu)eatlstceaiaroromlncfclsuoothstlloaeeectiuolnasr to proobvtiadineeadnceoxoprdlainnaatitoionnpfoolyrmtheersloinnethpeasiorliadc-tsitvaittey; ;a(nvd) (svtui)ddieetdertmhieneludmthine ebsaccetnercieosptartoicpearcttiiveistyof the obtaiangeadincsotoHrd. pinylaotriio, nwphioclhymwaesrscoinmtphaeresdolwidi-tshtaotteh;ear nBdi(I(IvI)i)cdarebtoexrmylainteedcotmheplbeaxcetse. riostatic activity against H. pylori, which was compared with other Bi(III) carboxylate complexes

Results and Discussion
Experimental
Topological Analysis
DFT Calculations
Solid-State Photoluminescence Measurements
Solubility and Stability Studies
Bacterial Strains and Culture Conditions
Conclusions
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call