Abstract

Arginase, the binuclear metalloenzyme, is a potential target for therapeutic intervention in protozoan infections. Entamoebahistolytica infection causes amebiasis which is the second most common cause of protozoan-related human deaths after malaria. Here, we report the crystal structure of E.histolytica arginase (EhArg) in complex with two known inhibitors Nω -hydroxy-l-arginine (l-NOHA) and l-norvaline, and its product l-ornithine at 1.7, 2.0, and 2.4Å, respectively. Structural and comparative analysis of EhArg-inhibitor complexes with human arginase revealed that despite only 33% sequence identity, the structural determinants of inhibitor recognition and binding are highly conserved in arginases with variation in oligomerization motifs. Knowledge regarding the spatial organization of residues making molecular contacts with inhibitory compounds enabled in the identification of four novel non-amino acid inhibitors, namely irinotecan, argatroban, cortisone acetate, and sorafenib. Invitro testing of the insilico-identified inhibitors using purified enzyme proved that irinotecan, argatroban, cortisone acetate, and sorafenib inhibit EhArg with IC50 value (mm) of 1.99, 2.40, 0.91, and 2.75, respectively, as compared to the known inhibitors l-NOHA and l-norvaline with IC50 value (mm) of 1.57 and 17.9, respectively. The identification of structure-based non-amino acid inhibitory molecules against arginase will be constructive in design and discovery of novel chemical modulators for treating amebiasis by directed therapeutics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.