Abstract

A hemoglobin (Hb) wrapped covalently by three human serum albumins (HSAs) is a triangular protein cluster designed as an artificial O2-carrier and red blood cell substitute. We report the structural insights into this Hb-HSA3 cluster in aqueous medium revealed by 3D reconstruction based on cryogenic transmission electron microscopy (cryo-TEM) data and small-angle X-ray scattering (SAXS) measurements. Cryo-TEM observations showed individual particles with approximately 15 nm diameter in the vitrified ice layer. Subsequent image processing and 3D reconstruction proved the expected spatial arrangements of an Hb in the center and three HSAs at the periphery. SAXS measurements demonstrated the monodispersity of the Hb-HSA3 cluster having a molecular mass of 270 kDa. The pair-distance distribution function suggested the existence of oblate-like particles with a maximum dimeter of ∼17 nm. The supramolecular 3D structure reconstructed from the SAXS intensity using an ab initio procedure was similar to that obtained from cryo-TEM data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.