Abstract

A series of fumarate-based organocobalt(I) [CoCp(CO)(fumarate)] catalysts is synthesized and characterized by X-ray crystallography, multinuclear (13 C and 59 Co) solid-state NMR spectroscopy, and 59 Co NQR spectroscopy. Given the dearth of 59 Co solid-state NMR studies on CoI compounds, the present work constitutes the first systematic characterization of the 59 Co electric field gradient and chemical shift tensors for a series of cobalt complexes in this oxidation state. Using X-ray crystallography, the molecular geometry about the CoI centre is found to be nearly identical in all compounds studied herein. Owing to the 59 Co nucleus' large chemical shift range, solid-state NMR experiments are found to be able to detect small structural differences between the individual organocobalt(I) compounds. With the aid of density functional theory calculations on these complexes, it is shown that the 59 Co chemical shift anisotropy and the 59 Co quadrupolar coupling constant are both extremely sensitive gauges of the Fu-Co-Cp bond angle, providing a link between these 59 Co NMR observables and the catalysts' structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.