Abstract

External control over the pore size of flexible metal-organic frameworks (MOFs) has recently emerged as an intriguing concept, with possible applications to gas storage and separation. In this work we present a new pressure cell capable for the first time of monitoring through in situ X-ray powder diffraction an adsorbent powder under combined uniaxial applied mechanical stress (up to 1 GPa) and gas pressure (up to 20 bar). The combined stress-pressure clamp (CSPC) cell was successfully exploited to follow the evolution of the CO2 breathing behaviour of the prototypical complex breathing MIL-53(Al) system under mechanical compression obtaining structural evidence that this MOF can be maintained in its closed pore state upon compression, precluding its re-opening at high gas pressure (>7 bar). This novel setup shows potential for the in-operando exploration of flexible systems, in equilibrium and flow configurations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call