Abstract
The origin recognition complex (ORC) is indispensable for the initiation of DNA replication during the cell cycle. The DNA-binding modes of the human ORC winged helix domain (WHD) remain enigmatic, as the dsDNA recognition sites of archaeal and Saccharomycescerevisiae ORC WHDs are distinct. Here, we solved the high-resolution crystal structure of the human ORC2 WHD, although its complex with dsDNA is difficult to crystallize due to its weak binding affinities. The near-complete NMR backbone assignments and chemical shift perturbations reveal a new dsDNA binding topology in addition to the conserved β-sheet hairpin region, in which residues show higher dynamics. The key interacting residues (R540, K548, and K549) were validated by mutagenesis studies. Our data suggest that the ORC2 WHD recognizes dsDNA sequences through its flexible β-sheet hairpin as an anchor point, while the rest of the protein adopts various orientations in different species. This weak but real interaction module identified by NMR is useful for the structural reconstruction of large biomolecular complexes using cryo-EM. The binding topology and dynamics of ORC2 WHDs were also underpinned by molecular dynamics simulations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.