Abstract

Glucokinase (GK) plays a key role in the regulation of hepatic glucose metabolism. Inactivation of GK is associated with diabetes, and an increase of its activity is linked to hypoglycemia. Possibility to regulate the GK activity using small chemical compounds as allosteric activators induces the scientific interest to the study of the activation mechanism and to the development of new allosteric glucokinase activators.Interaction of glucokinase with ligands is the first step of the complicated mechanism of regulation of the GK functioning. In this paper, we study the interaction of GK with native (glucose) and synthetic (allosteric activators) ligands using molecular docking method. Calculations demonstrate the ability of molecular docking programs to accurately reproduce crystallized ligand poses and conformations and to calculate a free energy of binding with satisfactory accuracy. Correlation between the free energy of binding and the bioactivity of activators is discussed. These results provide a new insight into protein–ligand interactions and can be used for the engineering of new activators.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.