Abstract

The L858R mutation in EGFR is particularly responsive to small tyrosine kinase inhibitors (TKIs) such as gefitinib and erlotinib. This efficacy decreases due to drug resistance conferred by a second mutation, T790M, which subsequently produces a double mutant, L858R/T790M. Although this resistance was initially attributed to steric blocking by the T790M mutation, experimental studies have demonstrated that differences in the binding affinities of TKIs to T790M and L858R/T790M mutants are more a result of the increased sensitivity of these mutants to ATP than to a decrease in the affinity to TKIs. Regrettably, detailed information at the atomic level on the origins of the increased binding affinity of mutants for ATP is lacking. In this study, we have combined structural data and molecular dynamics simulations with the MMGBSA approach to determine how the L858R, T790M and L858R/T790 mutations impact the binding mechanism of ATP with respect to wild-type EGFR. Structural and energetic analyses provided novel information that helps to explain the increased affinity of ATP to T790M and L858R/T790 mutants with respect to L858R and wild-type systems. In addition, it was observed that dimerization of the wild-type and mutant systems exerts dissimilar effects on the ATP binding affinity characteristic of negative cooperativity.Communicated by Ramaswamy H. Sarma

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.