Abstract

Molecular dynamics simulations were employed to analyze the conformational preferences and binding modes of epothilones A and B as a source of structural information regarding the antitumor properties of these species. Our results suggest that the conformation of free and tubulin-bound epothilones is strongly influenced by the presence of a methyl group at C12 and that epothilones A and B exploit the binding cavity in a unique and different way. The binding sites of epothilones A and B share a common region of association (Leu215, Leu217, His227, Leu228, Ala231, Phe270, Gly360, and Leu361), but lead to different ligand–residue interactions. Average interaction energies predict a larger stabilization for the epothilone B–tubulin complex, which is mainly driven by the enhancement of the electrostatic component of ligand–residue interactions compared to the epothilone A–tubulin complex. These structural and energetic results can be useful to account for the activity difference between epothilones A and B, and to design more active and potent analogs that resemble the mechanism of action of epothilones against cancer cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call